Search results for " meshless"
showing 10 items of 27 documents
A marching-on in time meshless kernel based solver for full-wave electromagnetic simulation
2012
A meshless particle method based on an unconditionally stable time domain numerical scheme, oriented to electromagnetic transient simulations, is presented. The proposed scheme improves the smoothed particle electromagnetics method, already developed by the authors. The time stepping is approached by using the alternating directions implicit finite difference scheme, in a leapfrog way. The proposed formulation is used in order to efficiently overcome the stability relation constraint of explicit schemes. In fact, due to this constraint, large time steps cannot be used with small space steps and vice-versa. The same stability relation holds when the meshless formulation is applied together w…
Corrective meshless particle formulations for time domain Maxwell's equations
2007
AbstractIn this paper a meshless approximation of electromagnetic (EM) field functions and relative differential operators based on particle formulation is proposed. The idea is to obtain numerical solutions for EM problems by passing up the mesh generation usually required to compute derivatives, and by employing a set of particles arbitrarily placed in the problem domain. The meshless Smoothed Particle Hydrodynamics method has been reformulated for solving the time domain Maxwell's curl equations. The consistency of the discretized model is investigated and improvements in the approximation are obtained by modifying the numerical process. Corrective algorithms preserving meshless consiste…
Evolutionary design optimization with Nash games and hybridized mesh/meshless methods in computational fluid dynamics
2012
Meshless Electrophysiological Modeling of Cardiac Resynchronization Therapy—Benchmark Analysis with Finite-Element Methods in Experimental Data
2022
Computational models of cardiac electrophysiology are promising tools for reducing the rates of non-response patients suitable for cardiac resynchronization therapy (CRT) by optimizing electrode placement. The majority of computational models in the literature are mesh-based, primarily using the finite element method (FEM). The generation of patient-specific cardiac meshes has traditionally been a tedious task requiring manual intervention and hindering the modeling of a large number of cases. Meshless models can be a valid alternative due to their mesh quality independence. The organization of challenges such as the CRT-EPiggy19, providing unique experimental data as open access, enables b…
The Poisson problem: A comparison between two approaches based on SPH method
2012
Abstract In this paper two approaches to solve the Poisson problem are presented and compared. The computational schemes are based on Smoothed Particle Hydrodynamics method which is able to perform an integral representation by means of a smoothing kernel function by involving domain particles in the discrete formulation. The first approach is derived by means of the variational formulation of the Poisson problem, while the second one is a direct differential method. Numerical examples on different domain geometries are implemented to verify and compare the proposed approaches; the computational efficiency of the developed methods is also studied.
A multi-sphere particle numerical model for non-invasive investigations of neuronal human brain activity
2013
In this paper, a multi-sphere particle method is built- up in order to estimate the solution of the Poisson's equation with Neumann boundary conditions describing the neuronal human brain activity. The partial difierential equations governing the relationships between neural current sources and the data produced by neuroimaging technique, are able to compute the scalp potential and magnetic fleld distributions generated by the neural activity. A numerical approach is proposed with current dipoles as current sources and going on in the computation by avoiding the mesh construction. The current dipoles are into an homogeneous spherical domain modeling the head and the computational approach i…
A FE-Meshless Multiscale Approach for Masonry Materials
2015
Abstract A FE-Meshless multiscale computational strategy for the analysis of running bond masonry is presented. The Meshless Method (MM) is adopted to solve the boundary value problem (BVP) at the mesoscopic level. The representative unit cell is composed by the aggregate and the surrounding joints, the former assumed to behave elastically while the latter are simulated as non-associated elastic-plastic zero-thickness interfaces with a softening response. Macroscopic localization of plastic bands is obtained performing a spectral analysis of the tangent stiffness matrix. Localized plastic bands are embedded into the quadrature points area of the macroscopic finite elements.
Multi-scale computational homogenization with applications to masonry structures
FE·Meshless multiscale modeling of heterogeneous periodic materials
2013
The computational mutiscale modeling of periodic heterogeneous materials, characterized by the assembly of units and joints, represents a compromise between the inaccuracy resulting from the macro modeling approach and the computational effort of the meso modeling. Assuming that the heterogeneities are orders of magnitude smaller than the structure dimensions, according to the multiscale approach, the macroscopic stresses and strains around a certain point can be found by averaging the stresses and the strains in a small representative part of the microstructure or a representative volume element (RVE) attributed to that point. A first-order two-scale scheme has been used to model heterogen…
Advancements on the FE·Meshless CH for the analysis of heterogeneous periodic materials
Over the last few years, the intrinsic role of different spatial scales in the mechanics of materials has been well recognized. Generally, two main different scales can be identified in the heterogeneous materials: the macroscopic level, which coincides with the global structural one, and the mesoscopic level, that is the scale at which the heterogeneities can be identified and where the most relevant nonlinear mechanical phenomena occur. In this framework, substantial progress has been made in the two-scale computational homogenization (CH). This method is essentially based on the on the fly assessment of the macroscopic constitutive behavior from the boundary value problem (BVP) of a stat…